机器学习数据与知识环境的统一框架

活动信息

  • 开始时间:2024-02-07 09:00:00
  • 活动地点:创新园大厦A0702
  • 主讲人:Witold Pedrycz

活动简介

The objective of this talk is to identify the challenges and develop a unique and comprehensive setting of data-knowledge environment in the realization of the development of ML models. We review some existing directions including concepts arising under the name of physics informed ML. Key ways of elicitation and accommodation of domain knowledge are investigated. An impact on the structuralization of the ML architectures and the ensuing implications on the interpretability, explainability and credibility as well as semantic stability are studied. We investigate the representative topologies of ML models identifying data and knowledge functional modules and interactions among them. The detailed considerations on the facet of explainability including new ideas of semantic stability are covered. We also elaborate on the central role of information granularity in this area.

主讲人介绍

Witold Pedrycz是加拿大阿尔伯塔大学电气与计算机工程系教授、加拿大皇家学会院士和波兰科学院外籍院士,主要从事计算智能、粒计算和机器学习等领域的研究。在这些领域,Witold教授取得了杰出的成果,并获得了多个奖项,包括:IEEE系统、人与控制论学会的Norbert Wiener奖、IEEE加拿大计算机工程奖章、欧洲软计算中心的Cajastur软计算奖、Killam奖、IEEE计算智能学会的模糊先锋奖,以及IEEE系统、人与控制论学会的2019年功绩服务奖。Witold教授也是国际SCI期刊Information Sciences、 WIREs Data Mining and Knowledge Discovery (Wiley),、 Int. J. of Granular Computing (Springer) 和 J. of Data Information and Management (Springer)等期刊的主编。Witold教授应邀为我校研究生做《A Unified Framework of Data and Knowledge Environment of Machine Learning》的主题报告,通过该报告扩大研究领域和视野,了解国际机器学习、计算智能等方向的最新研究进展,更好的促进科研工作。