商品销售相关性研究一直受到学者们的关注,在商品销售相关性领域,研究主要围绕购物篮分析(MBA)展开。传统关联规则反映了商品被同时购买的概率,关联规则涉及的商品被购买的时间和商品被购买的数量等信息不能很好地从传统关联规则获取。这些信息对于零售业具有重要意义,能够帮助零售业企业科学进行商品促销等活动。时间序列数据挖掘可以发现商品销售数据中相似时间段和相似销售趋势,当不同商品相似销售趋势发生在同一时间段,商品之间极有可能具有相关性。另外,通过这种研究能够发掘局部时间内强关联,但整体关联程度不强的商品。这些商品往往被强关联规则所忽视,但是更有指导和实践意义。由于这些相关关系和传统关联规则算法不同,通过对商品销售时序数据进行相关性分析,利用矩阵画像(Matrix Profile)寻找最相似子序列片段,来发现商品销售数据局部相关性甚至商品的弱关联规则。数值实验表明,通过销售数据兴趣模式挖掘,可以发现商品之间确实存在局部关联性,能够帮助企业的商品供货和促销决策提供理论和技术支持。